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ABSTRACT.An algorithm is presented for updating finite elementl. INTRODUCTION

models based upon a minimization of dynamic residuals. The dy-

namic residual of interest is the force unbalance in the homogeneo#s significant amount of research in structural dynamics system
form of the equations of motion arising from errors in the mode|’§ldentiﬁcati0n has focused on methods for reCOﬂCiling finite element
mass and stiffness when evaluated with the identified modal pararfitodels of structures with modal parameters identified from dynamic
eters. The present algorithm is a modification and extension of #sting. Early approaches to this problem involved the direct updat-
previously-developed Sensitivity-Based Element-By-Element (S'Blg of assembled stiffness and mass matrices to correlate to the
EBE) method for damage detection and finite element model updavailable modes and mode shapes identified from test. In order to
ing. In the present algorithm, SB-EBE has been generalized to mighoose a particular solution from an infinite number of possible so-
imize a dynamic displacement residual quantity, which is shown titions, some quantity, such as the norm of the matrix adjustment,
improve test-analysis mode correspondence. Furthermore, the alg¥ias minimized. Recent modifications to this general approach in-
rithm has been modified to include Bayesian estimation conceptéolve retaining the connectivity pattern of the model through con-
and the underlying nonlinear optimization problem has been consigtraints, or minimizing the rank of the matrix update. These methods
tently linearized to improve the convergence properties. The resul@re efficient and have been used successfully for both model adjust-
ing a|gorithm is demonstrated via numerical and experimentaments and for structural damage detection. For this discussion, this
examples to be an efficient and robust method for both localizinglass of methods can be termed optimal matrix updating.

model errors and estimating physical parameters. . ) . . )
A fundamentally different approach involves estimating or updating

NOMENCLATURE the “physical” parameters of the structural design, such as cross-sec-
tional areas, elastic moduli, or added masses, used in the finite ele-
[M], [C], [K] Nominal mass, damping and stiffness matrices ment model definition. There are a number of advantages to such an
approach over optimal matrix updating methods. First, the formula-
tion of the initial model, including its connectivity, is implicitly pre-
{og} Experimental mode shape vector for made served. This is quite important since the original model, if

WE; Experimental frequency (rad/s) for mode

(R} Dynamic residual (modal force) vector fc_nrmulgteql by a skilled analyst, contains a ;ignificant amo_unt of en-
gineering judgement about the structure of interest. Such judgement
[Zi] Undamped impedance matrix for moide supplements the reliable, yet incomplete, knowledge gained from
N [ 1o Measured, unmeasured partitiond] §f experimental data. Secondly, results of model updating can be un-
derstood in terms of errors in design parameters or modeling as-
[P;] Mode shape projection operator

sumptions. This provides a mechanism, at least ideally, for learning
[B] Parameter sensitivities for mode and improving the future modeling of similar structures. Finally, the
updated model is more generally useful for design sensitivity analy-
sis as it retains the flexibility of the finite element method, rather
[Qi] Approximate covariance matrix of dynamic residual than being simply a set of equations which predict the limited dy-
namic measurements. This approach is termed sensitivity-based
model updating, as it utilizes the sensitivity of predicted and estimat-
[sz] Covariance matrix of the experimental eigenvaluesed quantities, such as modal parameters or response functions, to the
‘ physical parameters of the model.

J,{g},[G] Objective function, linearized gradient and Hessian

[Qq,] Covariance matrix of measured mode shape

[Qp] Covariance matrix of the initial parameters

MAC; Modal assurance criteria The present paper addresses the problem of sensitivity-based model



updating through the minimization of a dynamic residual. This re- . 2[]

sidual arises due to errors in the model stiffness and mass matrices n&";]&"RiHZD @)

and is a reflection of the difference between the model’s predicted ) ) ) )

modal parameters and the modal parameters from experimental d&- iS the dynamic force residual for mode , defined as

ta. It_is a different approach, however, from directly comparing_the R = (K —wé M) Qg 4)
predicted and measured modal parameters and does not require the ‘

computation of the model modes and determination of the corravherewe is an experimentally-determined frequency of the struc-
spondence between the model modes and the test modes. This i€ for mode , angy; is the associated mode shape. Unfortunate-
distinct advantage, particularly when such correspondence is diffly. the degrees of freedom (DOF) at which the mode shape is
cult to establish. The present algorithm is a modification and exterf@mpled from test is typically much smaller than the number of DOF
Sion of a previous|y_deve|oped Sensitivity_Based E|ement_Byjn the flnlte element model Wthh defanS M . Therefore, to

Element (SB-EBE) method for finite element model updating [1]. @Pply Ean. 4, either the model must be reduced to the measurement
DOF, or the measured portion of the mode shape must be expanded

The madifications of the basic SB-EBE algorithm are intended tdo the displacement basis of the model. Although it is more compu-
address a number of practical issues encountered when applying th&onally intensive, the basic algorithm uses an expansion of the
algorithm to complex structures. First, a consistent linearization ahode shapes to compute the dynamic residual.

the governing minimization problem is derived to improve the rate

of convergence of the algorithm. The new linearization couples théhe theoretical basis for correcting the model using the dynamic
mode shape projection and parameter estimation stages of the alffyce residual is as follows. If the “correct” model is given as

rithm at a minor computational cost, and improves the estimate of OK. = K+AK [
curvature in the optimization space. Secondly, the residual govern- ¢ 0 (5)
ing the update problem is redefined as a displacement, rather than ¢ = M+AM[

force, quantity through a flexibility weighting. It is shown that this and from Eqn. 2

weighting improves the correspondence of test and analysis modal

parameters typically used to assess the model’s accuracy. Finally, (KC—(»EMC)q)Ei =0 (6)
Bayesian estimation is incorporated to condition the update prol%ﬁen
lem. Bayes estimation involves the use of relative confidence mea-

sures for the parameters being updated and the observed data used to -R = (AK - QE,AM)(PE (7)

uide the estimation. This important modification leads to a more re- . . . .
g P ﬁjence, R is a function of both magnitudes and locations of the

liable algorithm, especially in the presence of small sensitivity coe . . )
ficients, large model errors, and correlation between parameters. model errors [2-3]. The t.)aS'.C Hemez algorl_thm_ consists of three key
steps: mode shape projection, error localization (parameter selec-

The remainder of the paper is organized as follows. In Section 2, thi@n), and parameter estimation.
basic SB-EBE theory and algorithm is reviewed. In Section 3, th -
new modified algorithm is developed theoretically and its imple-s'1 Mode Shape Projection

mentation is detailed in Section 4. Numerical and experimental "o derive the proper projection operator from Eqn. 3, we must par-
sults are given in Section 5, and Section 6 offers concludingiin the mode shapg into its measured and unmeasured compo-
remarks. nents, and also partition the associated columns of the mass and

2. REVIEW OF BASIC THEORY AND ALGORITHM stifiness matrices. Then

2

. . . . . . R = (K-wgM)og;
The governing equations for linear time-invariant structural dynam-
ics are given as Pem O (8)

o . = ([Kp K —9E[M, M DT D

Mg+ Cqg+Kq = Bu 1) 0%, O

whereK ,C andM are the stiffness, damping, and mass matric@fereq,,, is the mode shape for mdde ~ at the measurement DOF,
from the finite e_Iement modet; s a vector of displacemants, 1%, is the unmeasured portion of the same mode shapeKgnd ,
a vector of applied forces, afél ~ maps those forces to the associatgd , K, andM, are the measured and unmeasured column sets of

degrees of freedom of the model. The homogeneous form of Eqntfe stiffness and mass matrices. The mode shape projection directly

leads to the following undamped generalized eigenproblem: results from minimizing the dynamic residual with respegio , as-
Ko = AMg ) suming no change in the model parameters, viz.
whereA is the eigenvalue, which is equahﬁ) , the square of the min RiTRi
undamped natural frequency, apd is the associated eigenvector, @
which is the physically the normal (i.e. undamped) mode shape. -1
phy. y ( ped) p D@, = —(Zo‘TZo,) Zo‘TZmi(pEm 9
The basic theory, developed by Hemez and Farhat (Univ. of Colo- - Poiqﬁ

rado, 1993), determines the charye to a set of physical parame-
ters of the model which minimize the norm of the dynamic forcevhere
residual, viz.



procedure, this adjustment is ignored in the determination of the

[zm zo] EFPE"\ E =R mode shape projection. While this simplifies the theory somewhat,
LA O%, O (10) it may introduce a serious computational cost. This is because, by ig-
7 = K—wEM noring the coupling between the projection and the parameter esti-

i = —WE

mation, the curvature of the parameter space is poorly estimated.

Z; can be termed the impedance or dynamic stiffness of mode .The result is that the curvature is artificially larger, leading to small-
er parameter changes and much slower convergence.

After the projection operator for mode is determined, the mode

shape is projected and the dynamic force resiBual  with respect Tis problem can be alleviated by adding a correction to the project-

the model DOF can be computed. Recalling Egn. 7, the DOF exhiled partition of the mode shapes which accounts for its dependence

iting the largest force residuals will be associated with the set afn the parameter estimation problem. Using

model elements whose parameters are significantly in error. There- T a7

fore, it is reasonable to select those parameters which cause the larg- Poi = = (ZoiZoi)  ZoiZmiPmi * Ooi 13)

est perturbations to the element matrices associated with a setthé linearization of the first-order conditions for Egn. 3 leads to the

model DOFj , whereR(j) is above some threshold level. In théollowing coupled system of equations:

original SB-EBE method this process is termed “zooming.” GAX = —g (14)
2.2 Parameter Estimation where
.
The final step, after projecting the mode shapes and choosing which BAD B E’Z B R %
model parameters to vary, is to compute the updated parameter val- 009, O o' 0
ues which minimize the sum of dynamic force residuals over a set of g, o oo o
. AX =000 9=0 ¢ O
modes, viz. ] 0 0 0
min R'R o B E : %
Ap .Z " 1) POon 0o O
0 YB'BAp=-YBR . . (15)
T T Z Bi Bi C, C, Cn
where R
G ¢, ZuZy O 0
_ | 0z 0Z; 0Z, = T T
B = ' ~@ ... ' c 0 Z,Z 0
" [oan® ap,®  aap,,” (12) § w2toz
R = (K-tM)@ ) 0 ... ZNZon

Here, B, is the sensitivity oR, to the parameters being updated. Reducing the system via Schur complements, we determine

3. NEW ALGORITHM: THEORY GAp = -7 (16)

The motivation for developing a new algorithm based upon the Séfyhere

EBE method came from tests of that algorithm on a moderately sim- & = 3 ( B'B, — Ci(ZIiZoi)_lciT) 9=y B'R

ple beam structure which will be reviewed in a later section. These |

tests revealed a number of potential problems, including unusually { a7)
ol

small magnitude parameter updates leading to slow convergence, ¢ = B/Z o n 9Zo R ... 9Zy R
and convergence to poor solutions as measured by relative frequen- OAp, " 0Ap, " T 0Py
cy error and mode shape correlations.

Comparing Eqgn. 11 to Eqn. 17, it is seen that the effect of the con-
Based on the above concerns, the basic theory and algorithm was égstent linearization is to reduce the positive curvature of the design

worked to incorporate: space. This formulation introduces only a modest increase in com-

. . . T . .
« Consistent linearization of the optimization problem to includePutations as the factorization @y Z,; is already computed during
coupling between mode projection and parameter estimation the mode shape projection step and thus can be saved for use in Eqn.
16. The introduction of this consistent linearization, however, dra-

matically improves the rate of convergence of the algorithm, as will
* Inclusion of Bayesian estimation concepts; e.g. weighting by thee shown in the numerical example problem.
force error covariance, incorporation of parameter confidence

» Generalization of the modal error vector

We now proceed to detail these modifications. 3.2 Generalization of the modal error vector

The functional selected for the optimization is not the only clear
choice for performing model update. Its advantage is that it does not

The solution proposed by the basic algorithm is staggered in the fdigduire solving for the modes of the model, and tracking those ana-

lowing sense. Although the model is being adjusted in the overalytical modes with respect to the test modes. Its disadvantage is that

3.1 Consistent linearization of the optimization problem



the updated model may not improve the errors between the analygispopular approach in estimation theory to address the aforemen-
and test frequencies, or improve the correlation of the mode shapéisned concerns is the use of Bayesian estimation [4]. For linear
In fact, these accuracy indicators may be significantly degraded, arsttuctural dynamics applications such as the present model updating
the resultant model cannot be judged as accurate as the initial mod@ioblem, Bayesian estimation reduces to a generalized least-squares

problem [5]. We can modify the performance index of the basic al-
In seeking to understand the convergence of the basic algorithm @yithm as follows:

poor solutions as measured by relative frequency and mode shape .

. ; " T min J (22)
errors, it is helpful to compare the technique to traditional estimation Ap, @,
algorithms. First, we can re-write the mdde contribution to the ob-

jective function in equivalent modal parameter terms, viz. where
N
2 =T 1= _
RR = oY (0 -0g) (MAC) (18) J= YR QR+0p'Q ap 3
J i=1
wherej ranges over all modes of the finite element model, and Q = diaEXZiPiQ(pwPiTZi + lezM Pi((pmi(p:wi)PiTM)
T 2
MAC. = ((P,- M @) q. = ((PE-)TM(PE- (19) Qp is the covariance matrix of the initial parameters being estimat-
! ((pjTMq)j)(((pEi)TMq)Ei) ' ' ' ed, Q, is the covariance matrix of the components of measured

mode shape Q . is the variance of the square of the measured
Here MAC; is themodal assurance criteriomwhich is a measure modal frequency, ang  is the mode shape projection matrix.
of the correlation between two mode shapes, in this case model ) - o ) . o
modej and testmode .The parameter is the modal mass of thhe primary difficulty in |nt.rodUC|r)g the Bayeglan estimation con-
test mode shape. From Eqn. 18, the contribution to the overall df€PL OF equivalently a maximum likelihood estimator, is that the er-
namic force residual from test mode is equivalent to summing ufP" quantity being minimized is not directly a measured quantity,
the squares of the differences between test eigenvalue and eaci1gfce the covariance being introduced is not simply the variances of
the eigenvalues of the model, which are scaled to the correlation &€ test data. Instead, the dynamic residual is a nonlinear function of
tween the test model shape and the associated model mode shapH§fdata, the model matrices and the mode shape projection, which
small correlations exist between the test mode shape and any motfeltself @ function of the model and based on the minimization of the
mode shapes with vastly different frequencies, the contribution diverall fungtlonal. Ther.efore, although introducing statlstlca] mea-
that term can dominate the performance index. This has the effect €S can, in general, increase the robustness of the algorithm, the
biasing the algorithm away from reconciling test and model mode@pPproach also leads to additional nonlinearities in which mode shape

which correspond more closely in both mode shape and frequenc?.rOJeCt'O“ and m_odal error covariance estl_mates are coupled. In the
present work, this nonlinearity is handled in a very cursory manner

To alleviate this problem, we can replace the modal force error byly computing an initial estimate @;  using only the measured
generalized modal erroR, = WR , where component of the mode shapes. That estimate is used to compute a
estimate of the mode shape projection. The mode shape projection is

=Ts E@J? —(ﬂé then used to re-compute a better estimat®,of , which is then used
RR= g EDB w2 B(MAC”) (20) to complete the algorithm. This is basically a predictor-correction
: approach and seems to work adequately for the applications studied.
This result can be obtained approximately by defintMig  as Other possibilities might include using a completely different mode
1 shape projection algorithm to compu@e
W = K* or M’K™ (21)

which implies that the generalized modal error is a dynamic dis‘-" NEW ALGORITHM: IMPLEMENTATION

placement residual quantity, rather than a dynamic force residual.|,, this section we review the step-by-step procedure for the new

3.3 Including Bayesian estimation concepts modified algorithm and discuss implementation issues.

Although the parameters being estimated usually evolve from som4e'1 Summary of Modified Algorithm

nonzero initial estimate, the basic algorithm places no relative CORrpe fo10wing procedure represents one pass or iteration through the
fidence on these initial values with respect to the test data used fﬁﬁdating algorithm. Because of the inherent nonlinearity of the op-

model adjustment. The quantitative result is that there is no penalfl”hwization, convergence to a solution can require many iterations.
placed on the magnitude of the parameter change. Therefore, any fi-

nal parameter value, no matter what magnitude or sign, is judged as

superior to the original estimate as long as the sum of the dynanficGiven K, M, po, Q,

force residuals have been reduced. In actuality, there are usually 0 e ) 0
both hard constraints placed on the parameter values and some de- [0, Pis Qs Qpp 1 =1, s N
gree of confidence in the initial parameter estimates. Furthermore, o O
the test data used for model adjustment is often imperfect, and the Sﬁ_K oM j=1 n E
confidence in the data varies depending on whether frequency or op; opy’ TPE

mode shape component estimates are being considered.



« Initialize J = 0 g=0 G = Q—l tributing a penalty term on the change in the parameter estimates.
' ' P Numerically, this term provides a positive-definite contribution to
the hessian which can be adjusted to reflect the analyst's relative

* Fori=1toN confidence in the initial parameter estimates.

2 . .
* Form Z; = W(K-weM) and partition into The second mechanism for controlling the curvature estimate is
through the use of a constghit  which parameterizes the lineariza-
Z; = I:Zmi ZOJ tion between that of the basic algorith{if = 0) and the modified
algorithm (B = 1) . This constant controls the contribution in the
 Predict Q; = diag(ZmiQ(pmlz;i + szMm((pmichi)M;) linearization of the coupling between the mode shape projection and
' the parameter estimation. This can be seen in the detailed procedure
. So—lve(zgiQi_lZoi)Poi — _Z;Qi—lzmi above, vv_here the_ contribution to the cur\{ature o_f m'oz_je is added to
the hessian matri&c . Note that the basic algorithm is always guar-
* Correct anteed positive-definite, but that guarantee comes at the cost of a
Q = diag(Q, + Z,;P,Q Pzizli + QwZMoPOi((pmi(p;i)PIiMI) poorer estimate of the curvat_ure. The use of the parafdeter  allows
‘ ' that cost to be controlled optimally by the user.

T~ T A1
* SO_lve(ZoiQi Zoi)(poi = —Z5iQi ZniPemi 4.3 Model Reduction
* ComputeR, = Z;¢ , B, = [bil bip ... bin;l where Rather than projecting the mode shapes, reduction of the model to
the measurement degrees of freedom can be employed. This is often
_wPK  20M avoided because the reduction of a complex model down to the small
by = W@_pj _wE‘a{j | number of DOF actually measured will introduce errors in the pre-

dictive accuracy of the model which lead to nonzero dynamic resid-
uals and hence inappropriate parameter corrections. A possible
compromise is to employ a component mode synthesis type of re-
duction such as the Craig-Bampton technique, which augments a

« Compute ¢; = I:Cil Ciy . Cinp:l , where

CE = bEQi’lzoi + RiTQi&W%KO—wE %—'\A—OE static condensation to the measurement DOF with a set of general-
Pj P; ized DOF spanning the lowest eigenmodes of the dynamics omitted
T _ in the static condensation. Typically, the addition of a small number
* Solve (ZiQi Zo)d; = ¢; of generalized DOF is sufficient to ensure that the reduced model
e Sum: can predict the eigenmodes of the full-order system. The experimen-
— tal modes would then be projected into this slightly larger subspace.

EJ:JJrRTQlei proj gntly larg p

Bg =g+ BTQi_lRi 4.4 Statistical Significance of the Parameter Estimates

5 =G+ E{Qi’lBi - Bcdei An advantage of Bayes estimation is that it allows the analyst to as-

sess the confidence intervals for the final estimates of the parame-
ters, as a function of their initial covariances, their sensitivity to the

data used in the estimation, and the covariance of that data. A linear-
ized estimate of the covariance of the updated parameters is given by

~ _ _ _ _ - -1
<=k+sPEp  p=peap Qp = G = [Q)+ T {B/Q'B-c(Z3QZ,) ©}] (24)

J ) evaluated at the point of convergence. From this result, the standard
deviation of the parameters can be determined by taking the square
root of the diagonal elements Qf, . Of course, this statistical quan-
tity is only as valid as the covariances of the data and the initial pa-
4.2 Control of Curvature Estimate rameters. The updated variances relative to their initial values are

useful, however, in determining whether the change in parameters is
As mentioned in the preceding sections, a consistent linearization significant and based on the data.
the optimization is employed in the modified algorithm to improve
its convergence properties. Caution must be exercised, however, asAPPLICATIONS
this linearization does not guarantee a positive-definite hessian. This .
is problematic because, without active intervention by the user, tiel Numerical Data: Planar Truss Structure
algquthm will converge o a.pomt of maximum error rathgr thanThe first example from Reference [1] was chosen to test the imple-
minimum error when in a region of the parameter space with nega-

. : mentation of the modified algorithm and assess its performance rel-
tive curvature. The present procedure offers two mechanisms fQr

controlling the curvature to avoid this result. The first is the use o?tlve tothe basic SB-EBE procedure. This example considers a free-

. . . . . . ree planar truss with 44 translational DOF, 7 of which are mea-
Bayes estimation, which conditions the estimation problem by con- . . : )
sured. For this comparison, the first 5 flexible modes are used to up-

* Solve GAp = —g

* Update



date the model, and the only parameters being updated are the elaStz Experimental Data: LADDER Structure

modulus of the two elements modified. Furthermore, the test data is

assumed to be perfect (zero variance), which implies that the Bay&he experimental example problem is a tubular welded structure

sian covariance weights are not used. Thus the only differences H&presentative of an automotive engine support. The goal of the
tween the two algorithms are the consistent linearization of th&odel updating was to determine unknown joint compliance param-

optimization problem and the weighting of the modal force error. €ters, and to adjust the basic properties, in order to correlate the first

14 modes identified from test. The test setup is shown in Figure 2.

The results are documented in Table 1. Note that, although the us
of the flexibility weighting do help to speed the convergence, it also
introduces a large computational overhead, especially when th
weighting matrix is full rather than sparse. Note also that updating_
the weighting matrix at each iteration as the stiffness was update
did not improve the convergence of the algorithm. The need for
weighting the modal error vector is dictated more by the quality of |
the final solution when the data is imperfect than by the convergenc
of the algorithm. Finally, it was found that using the full extent of
the consistent linearization led to a negative definite curvature
which caused the algorithm to diverge. Thereffre, was reduced t
0.95, which results in the fastest convergence.

Table 1: Comparison of Convergence Using Modified

Algorithm
Method Weighting Matrix .# upglate
iterations
Basic SB-EBE| N/A 180 . .
— Figure 2: Modal Testing Setup for LADDER Structure
Modified W =1 25
3 = 0.95 | (modal force error minimization . . .
— — The structure was instrumented with 96 accelerometers grouped in
BMfd(;Tgag (heIdVZOEStlzont 8 16 locations in order to extract both translational and rotational re-
Vodited — S sponse at beam cross-sections throughout the structure. The finite el-
B =095 (updated each iterai ) ement model of the structure is shown in Figure 3; itis a NASTRAN

model consisting of CBEAM elements, with spring elements intro-

The cases documented above were based upon the same con@ieed to model the joint compliances. Rigid offsets were used to de-

gence criterion. The parameter results for the basic SB-EBE algéfmine the responses at each accelerometer location, and
are shown in Figure iNstrumentation mass was included. The correlation of the modal pa-

rithm and the modified algorithm wit/ = |

1. Note here that, even at 180 update iterations, the basic algoritH@neters between the test-identified modes and the initial (pre-test)
has still not reached the correct updated parameter values, while fh@alysis model is documented in Table 2.

modified algorithm with its consistent linearization has converged t
within 1% of the correct values in less than 30 iterations
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Figure 3: Finite Element Model of LADDER Structure

After attempts to reconcile the model using the basic SB-EBE pro-
cedure failed, the modified algorithm was developed and applied to
this problem. The update evolved as follows: the joint spring param-
eters were estimated based on the first 8 flexible modes with the
model statically reduced to the 96 sensor DOF. This implied that no
mode shape projection was performed. Then, cross-sectional param-
etersl,, 1,,J were added and estimated along with joint rotational



Table 2: Initial LADDER Model/Test Comparison Table 4: Final LADDER Model/Test Comparison

Test | roquency | N9 | requency | *dference | gliince || Test | oquency | MOl | raguency | *dference | ol
(Hz) (Hz) Criteria (Hz) (Hz) Criteria
1 78.9674 1] 72.363 -8.3p 0.9973 1 78.9674 1 78.8034 -0.21L 0.9978
2 170.6259 3 174.9456 2.53 0.9963 2 170.6259 2 169.673p -0.56 0.9963
3 174.4670 2 161.5404 -7.41 0.9984 3 174.4670 3 174.6665 0.11 0.9981
4 214.7231 4 206.3898 -3.88 0.9981 4 214.7231 4 218.2671 1.65 0.9984
5 250.9062 5 255.1062 1.67 0.9951 5 250.9062 5 249.0289 -0.75 0.9957
6 312.1717 7| 318.614p 2.06 0.9580 6 312.1717| 6] 307.9859 -1.34 0.9894
7 315.7890) 6] 312.8396 -0.93 0.9516 7 315.7890 7 315.598y -0.06 0.9789
8 317.7661 9 368.6281 16.01 0.9486 8 317.7661 8 323.0028 1.65 0.8792
9 330.2652 8 333.6956 1.04 0.9968 9 330.2652 9 324.1070 -1.86 0.9521
10 432.5194 10 451.676p 4.43 0.9987 10 432.5194 10 435.3196 0.5 0.9955
11 518.5953 11 534.466[1 3.06 0.98p0 11 518.5953 11 514.9591 -0.10 0.98p4
12 563.6540] 14 806.4039 43.07 0.8115 12 563.6540| 12 542.8199 -3.67 0.87p4
13 612.8141) 12 631.6433 3.07 0.98[16 13 612.8141 13 615.068[7 0.37 0.97B2
14 674.3648 13 678.976p 0.8 0.79p3 14 674.3648 14 673.2796 -0.16 0.82p0

springs using test modes 1-9 and model statically reduced to the seasidual which is a function of the experimental modal parameters

sor DOF. The final values were estimated based on modes 1-12 wilnd the model mass and stiffness matrices. The present algorithm is

same parameters plus,,, and using the model reduced to meamodification of a previous method for sensitivity-based element-

sured DOF + torsional DOF for model grids. This final estimationby-element model updating and incorporates a generalized error

thus required that the mode shapes be projected. weighting, consistent linearization and Bayesian estimation. The al-
gorithm has been demonstrated on numerical and experimental data
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